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Abstract

A large number of process variables are usually measured and stored in computer data base during process operation. These variables are
usually highly correlated and the real dimensionality of the monitored process is considerably less than that represented by the number of
process variables collected. Successful process performance monitoring requires the efficient handling of large amounts of monitored plant
data. Principal component analysis reduces the dimensionality of the process by creating anew set of variables, principal components, which
attempt to reflect the true underlying system dimension. Process performance can then be monitored in alow dimensional principal component
space. Linear process performance monitoring is based upon plots of scores and squared prediction errorsfrom aprincipal component model.
However, for highly non-linear processes, this form of monitoring may not be efficient since the process dimensionality cannot be represented
by a small number of linear principal components. Non-linearly correlated process variables can be reduced to a set of non-linear principal
components, through the application of non-linear principal component analysis. Efficient process monitoring can then be performedin alow
dimensional non-linear principal component space. In parallel with the conventional multivariate plots, the use of accumulated scoresprovides
a significant breakthrough in the separation of different operating conditions/faults, leading to robust early warning of potential plant
malfunctions. An application to the condition monitoring of a polymerisation reactor demonstrates the effectiveness of the non-linear
monitoring approach. © 1997 Elsevier Science SA.
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1. Introduction ciples models describing the processes are not well under-
stood, or alternatively too complicated to model, then process
measurement data could be the only sources for gaining a
deep understanding of the processes. These processes have
thecharacteristic of ** datarich and knowledgepoor’’ . Process
monitoring based on multivariate statistical analysisof proc-
ess data has recently been investigated by a number of
researchers [13-25]. These approaches use the techniques
of principal component analysis (PCA) or projectiontolatent
structure (PLS). The aim of these approaches is to reduce

Process equipment is subject to breakdowns and malfunc-
tions during its operational life time. Malfunctions can have
amajor impact on process behaviour. They can reduce the
efficiency and consistency of production, lead to equipment
damage, or even resultin hazardoussituationsarising. Prompt
detection and diagnosis of faults is becoming increasingly
important owing to theincreasing economic, safety, and envi-
ronmental demands. Several techniques for process fault - ' g -
detection and diagnosis have been developed and these f[he dimensionality of the correlatgd process data by prqject—
include state and parameter estimation based approaches ing them down onto a lower dimensiona latent variable
[ 1-4], knowledge based approaches [5-8], neural network space. In practice, there are only a small number of events

based approaches [ 9-12], and statistical dataanalysis based driving a process at any one time. Thus the true dimension-
ality of aprocessistypically low. PCA and PLSaimtorealise

approaches [ 13-25].

During processoperation, typically alarge number of proc- the true dimensionality of the monitored process. Process
ess variables are routinely monitored and stored in computer performance monitoring can then be carried out in this
data base. For some complex processes where the first prin- reduced latent variable space. An envelope of normal oper-

ation can be defined from the nominal process operating data.
* Corresponding author. Tel.: +44 191 222 6000; fax: +44 191 222 The detection and classification of process malfunctionscan
5292; e-mail: jie.zhang@newcastle.ac.uk be undertaken through the inspection and analysis of plots of
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the squared prediction error (SPE) and the scores from the
PCA or PLS model.

These multivariate statistical performance monitoring
techniques are based on linear statistical techniques. In some
processes where severe non-linear correlation exists among
process variables, linear statistical techniques are not very
effective in reducing process data dimension. If linear PCA
isused in these processes, a large number of principal com-
ponents are required to explain sufficient data variance. In
this case, the PCA approach becomes cumbersome because
too many plots are needed. For non-linearly correlated data,
theresultsfrom linear PCA may beinadequate because minor
components can contain important information on non-
linearity [26]. By discarding the minor components, this
important information is lost. However, if these minor com-
ponents are kept, the linear methods may contain too many
components to be useful. For processes with severely non-
linear correlation, non-linear statistical techniques for data
dimension reduction should be used. This paper presents a
technique for process performance monitoring using non-
linear statistical technique for PCA. Non-linear PCA can
effectively reduce the dimensionality of non-linearly corre-
lated process data. A technique for improved fault classifi-
cation using accumulated non-linear principal component
scoresisalso proposed in this paper. The proposed non-linear
statistical process performance monitoring technique has
been applied to a polymerisation process.

This paper is organised as follows. Section 2 presents
process condition monitoring based on linear multivariate
statistic techniques and discussestheir limitations. Section 3
presents non-linear PCA using the principal curve method.
Application of non-linear PCA based process monitoring to
a polymerisation reactor is described in Section 4. The last
section contains some concluding remarks.

2. Statistical process performance monitoring
2.1. Principal component analysis

PCA isone of the most widely used multivariate statistical
techniques. By considering all the noisy and highly correlated
measurements on a process, a reduced set of latent variables
are calculated through the application of PCA. These latent
variables summarise all the relevant information by project-
ing the original information down onto a low dimensional
subspace.

Let X= (x4, x5 ..., X,,) bean m-dimensional data set. The
first principal component is the line that best approximates
the data, that linear combination of the columns of X which
describes the greatest amount of variability 7, =p{X subject
to |p| =1. The direction of the line is determined by the
loading vector p,, and the co-ordinates of the point i are ¢;,,
the scores. The second principal component then explainsthe
greatest amount of variability in the residual data: 1,=pJE;
where E; =X —p1t,. This procedure is essentially repeated

until m principal components are calculated. In effect PCA
decomposes the observation matrix, X, as

X=TP"=Y 1,P] (1)

i=1

wherep;, isthe eigenvector of the covariance matrix of X. The
matrix P isdefined asthe principal component | oading matrix
and T is defined as the matrix of principal component scores.
The loadings provide information as to which variables con-
tributethe most to individual principal components. They are
the coefficients on the principal components model.

PCA depends critically on the scales used to measure the
variables. If there are large differences between these varia-
bles, then those variables whose magnitudes are large will
tend to dominate the first a few principal components. Thus
the results of PCA vary with the scales used for different
variables. Thelack of scaleinvarianceimpliesthat careneeds
to be taken when scaling the data. Different scaling routines
can produce different results. A commonly used scaling
method is the so called *‘auto-scaling’’ where each variable
is scaled to zero mean and unit variance.

One feature of PCA isthat the lessimportant components
often describe noise in the data. If the process variables are
collinear, k principal components (k<m) will explain the
majority of the datavariability, i.e. asmaller number of prin-
cipal components than origina variables are sufficient to
explain the major variability in the data. It istherefore desir-
able to exclude these less important principal components.
The datamatrix X can be written as

k
X=Y 1P +E (2)

i=1

where E istheresidual matrix due to the omission of theless
important principal components. The number of components
toincludein amodel can beidentified using techniques such
as cross-validation [27]. By disregarding E, noise filtering
can be achieved. In practice, there are only a small number
of events driving a process at any one time. Thus the true
dimensionality of a processistypicaly low, i.e. k<m. The
process performance can then be monitored by using asmall
number of principal components.

2.2. Performance monitoring charts

Statistical process control (SPC) charts such as the She-
wart charts are well established statistical procedures for
monitoring stable univariate processes. The assumption
behind them is that a process subjects only to its normal
variability will remain in astate of statistical control unlessa
special event occurs. Control charts represent statistical
hypothesis testing procedures aimed at detecting the occur-
rence of aspecial event asquickly aspossible. However, with
the advent of new computer systems, alarge number of proc-
ess variables are now monitored. Plotting SPC charts for
individual variablestherefore becomesexcessiveand unman-
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ageablefor the processoperator to successfully monitor proc-
ess performance. Multivariate monitoring strategies will
circumvent such problems.

Development of a monitoring strategy using projection
technigues commences with the development of a PCA rep-
resentation, from nominal process operation data, with an
envelope of nomina operation being defined [13,14,20].
Once the nominal model has been defined, the fitted values
can be calculated for each new multivariate observation.
These values can then be used to evaluate the squared pre-
diction error, SPE, for each new observation, i.e. the squared
difference between the observed values and the predicted
values from the nominal or reference model. Process moni-
toring charts can then be set up using the first two or three
principal components and the SPE from the PCA model.
Figs. 1-3 show a number of performance monitoring charts
involving plotsof SPE and scores[13]. InFig. 1theprincipal
components T1 and T2 form the x and y-axes of the monitor-
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Fig. 1. Three dimensional representation of SPE and scores.
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Fig. 2. Various two-dimensional representations of scores and SPE.
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Fig. 3. SPE against time.

ing chart, respectively, with the SPE definingthez-axis. Fig. 2
gives three possible two-dimension representation of scores
and the SPE. Fig. 3 can be used to monitor the SPE at each
sampling time point. Malfunctions within a process are gen-
eraly identified by one of the following two scenarios. Inthe
first case, the fault will affect the correl ation structureamong
the measured processvariables. Thenominal PCA model will
cease to be valid and the cal culated predictionswill result in
the SPE being significantly different from zero. This can be
detected from the SPE plot and is represented by A in
Figs. 1-3. In the second situation, the fault has no impact on
the correlation structure between process variables and the
SPE will remain within its control limit but, the scores from
the PCA model will move outside the envelope of normal
operation. This situation is represented by X in Figs. 1-3.
Acceptabl e process performance would fall within the enve-
lope of normal operation and isrepresented by O inFigs. 1—
3. Confidence bounds for the normal operating region can
be calculated based upon statistical distribution theory
[20,21,23].

It isa common practice to limit the number of latent vari-
ables to no more than three, for the convenience of visua
inspection [ 14]. However, for some processes which exhibit
non-linear behaviour, such as batch processes and some con-
tinuous processes with product grade changes, a small num-
ber of linear principal components cannot adequately explain
asufficient level of variability in the data. If a small number
of principal components are still used in this case, a large
value for the SPE can be observed even when the processis
under normal operation. The large SPE may not be due to a
fault but may be a consequence of having an insufficient
number of principal components retained inthe PCA model.
Furthermore, the results of using linear PCA on anon-linear
process may be inadequate because minor components can
contain important information on non-linearity [ 26]. By dis-
carding the minor components, thisimportant information on
non-linearity islost. On the other hand, if too many compo-
nents are kept the advantage of PCA in reducing data dimen-
sionislost. To overcometheseproblems, non-linear principal
component analysis can be used.

3. Non-linear principal component analysis

Several approaches for non-linear principal component
analysis have been proposed. Gnanadesikan and Wilk [28]
suggested a generalised principal component analysis
approach. Hastie and Stuetzle [ 29] devel oped the concept of
principal curve which has subsequently been incorporated
into a neural network topology by Dong and McAvoy [ 30]
to create non-linear principal components. The use of autoas-
sociative neural networks was proposed by Kramer [31] to
extract non-linear features from within a data set. In this
paper, the principal curve approach is adopted to monitor
process operation.
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The main difference between PCA and non-linear PCA is
theintroduction of non-linear mappings between the original
and reduced dimensional space. A linear principal component
minimises the sum of the orthogonal deviations between a
straight line and the datawhil st the non-linear approach sum-
marises the data by a smooth curve which is determined by
the non-linear relationships between all the variables. The
curve minimises the orthogonal deviations between the data
and the curve. If anon-linear function can be used to express
this curve, then the function is equivaent to the principal
loadings in linear PCA, whilst if we project the data down
onto the curve and find indexes to express the projected
points, these indexes are equivalent to the principal scores
for linear PCA.

Hastie and Stuetzle [ 29] presented a possible solution for
solving the non-linear principal component problem, princi-
pa curves. A principal curve is a smooth one-dimensional
curve that passes through the middle of an m-dimensional
data set. Its shape is determined by the structure of the data.
A one-dimensiona curve in an m-dimensional space is a
vector f(A) of m functions of a single variable A. These
functions are caled co-ordinate functions. The variable A
parameterises the curve and provides an ordering along it.
Thereisanatural parameterisation for curvesin termsof the
arc length.

Let X € R™ be arandom vector, then the curvefiscaled a
principal curve of X if

E(XIA(X) =A) =f(}) (3
where A, is defined as a projection index of R” — R*

)\f(X)=SleO{NIIX—f(/\) I =infl.X —fCw) |1} 4

So the projectionindex A;(X) of X isthevaueof A for which
f(X) isclosestto X. If thereare several such values, thelargest
isused. It is proven in [29] that, if the principal curveisa
straight line, then it isalinear principal component.
Calculation of principa curve using Eq. (3) requires that
the distribution of X be known. In practical applications, we
usualy work with a finite multivariate data set, X, and its
distribution is unknown. Hastie and Stuetzle [ 29] show that
E(XIA(X)=A\) can be estimated by means of scatter-plot
smoothing and locally weighted regression using neighbour-
hoods of each point defined by their projections onto the
current estimate of the principa curve. For every iteration,
the algorithm consists of two steps, a projection step and a
smoothing step. The calculation is generally started with the
linear principal component astheinitial curve. In the projec-
tion step, data points are projected down onto the curve. Then
each data point is assigned a parameter value A,;, whichisthe
arc length measured from the curve starting point. The data
are then ordered according to the parameter values. In the
smoothing step, the curveis smoothed using atechniquesuch
as the locally weighted regression smoother [ 32] or kernel
smothers [ 33]. After each iteration, the distance between the
data set and the estimated principal curveiscalculated and if

itsrelative change is below a pre-defined threshold, the algo-
rithm is assumed to be converged. The procedureisiterated
between thetwo stepstill convergenceresults. If oneprincipal
curve cannot explain sufficient data variance then the second
principal curveiscalculated from theresidual data. Thispro-
cedureis repeated until sufficient number of principal curves
arefound. Detailed cal culation procedurefor principal curves
can befoundin [29,30].

Inlinear PCA, the principal loading vectors can be used as
amodel to generate principal scoresfor new data. However,
the principal curve procedure does not give any non-linear
loadings. Inindustrial processapplications, itisusually desir-
able to have a non-linear principal component model which
can be used to generate non-linear principal components for
new data. Dong and McAvoy [30] proposed using neural
networks to learn non-linear principa component models.
Two networks are required. Oneis used to learn the mapping
between the data and the non-linear scores and the other is
used to learn the mapping between the non-linear scores and
the corrected data.

The following example demonstrates the power of non-
linear PCA over linear PCA. In this example, data are gen-
erated from the following eguations:

x,=0.5£—2t+0.5 (5)
X,=F+t+d€n(mt) (6)
X3 =21 —t—2 cos(mt) (7)

with ¢ taking random valuesin therange [ — 1, 1]. Thethree
variablesarecorrelated inanon-linear manner withtheintrin-
sic dimensionality of the variables being one. Two hundred
data points were generated and random noise in the range
(—0.3, 0.3) was added to these data. The noise accountsfor
1.55% of datavariability inthenoisy dataset. Fig. 4 compares
the results of linear PCA and non-linear PCA using principal
curves. It can be seen that thefirst linear principal component
can only explain about 60% of the data variance whereasthe
principal curve can explain about 98% of the data variance.
Linear PCA indicates that the data dimension cannot be
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Fig. 5. Reconstruction based on linear and non-linear principal components.

reduced to itstrue intrinsic dimension since that will lead to
a significant loss in the explained data variance. However,
theprincipal curve based non-linear PCA reveal sthat thedata
dimension can be reduced from threeto one. Fig. 5 compares
the reconstruction from alinear principal component and that
from anon-linear principal component. InFig. 5, theoriginal
data points are represented by +, data reconstruction from
the first linear principal component is represented by *, and
that from the first non-linear principal component is repre-
sented by O. It can be seen that the principa curve lies
smoothly on top of the data in sharp contrast to the linear
principal component.

4. Application to a polymerisation reactor
4.1. The polymerisation reactor

A low density continuous polyethylene reactor is used to
demonstrate the methodology. A simulation programme
based on detailed reaction kinetics has been developed by
the Department of Chemical Engineering, University of
Thessaloniki, Greece. There are 14 measured variables and
5 quality variables which are not measured. The simulation
programmeis capable of simulating the reactor under various
operating conditions.

The economic operation of a polymerisation process usu-
ally requiresthat unreacted speciesberecovered and recycled
back into the process. Associated with the recycle of solvent
and unreacted monomersisalso therecycle of reactiveimpu-
rities which are introduced into the system in the fresh feed
or as byproduct of chemical reactions. The levels of reactive
impurities can be built up to the point where the reacting
system is severely affected. Almost al types of polymerisa-
tion are sensitive to reactive impurities. In polymerisation
processes, reactive impurities are usually traces of inhibitors
or oxygen. The studies of Penlides et a. [34] show that

impurities in an emulsion system consume rapidly reactive
free radicals, thus preventing particle generation and decel-
erating the growth of any polymer particles already present.

Another problem affecting polymerisation is reactor foul-
ing. Many polymers are viscous and can accumulate on the
wall of areactor vessel during polymerisation. Most of the
polymerisation processes are operated under controlled tem-
perature profiles, either constant or time varying.

Reactor temperatureis usually controlled by manipulating
the flow rate or temperature of coolant through the reactor
jacket. The accumulation of polymer particles on the reactor
wall will reducethe heat transfer capability of thereactor and
is known as reactor fouling. Reactor fouling will make the
reactor temperature control system less effective. In this
study, four fault situations are studied and they are: reactive
impurities, reactor fouling, problems with solvent, and com-
bined reactive impurities and reactor fouling. Process oper-
ating data for normal and faulty operating conditions are
generated from simulation.

4.2. Process monitoring using non-linear PCA

Linear PCA of the normal reactor operation data shows
that two principal components can explain 49% of the data
variance with three principal componentsexplaining 65%. In
this case, thereisasubstantial amount of datavariancewhich
cannot be explained by the first two or three principal com-
ponents. Process monitoring based on the first two or three
linear principal components may therefore give unreliable
resultsdueto theinadequatelinear PCA models. A non-linear
PCA model should be used to monitor the process.

Non-linear PCA based on principal curves was used to
analysis the normal reactor operation data. Two non-linear
principal components explain 75% data variance and three
non-linear principal components explain 90% of the data
variance. This suggests that non-linear PCA is more appro-
priate in this situation, with fewer components required to
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explain the variability in the data. One of the major advan-
tages of thisresult isthat the operators monitoring the behav-
iour of the process would only be required to supervise a
small number of charts. A non-linear principal component
model with three principal components was developed. The
neura network model for the non-linear scores had the struc-
ture (14-15-3) whilst that for the principal curves had the
structure (3-15-14). The structures for these network mod-
els are determined from cross validation studies. The reactor
data were split into a set of training data and a set of testing
data. The network structures giving the best performance on
the testing data were selected.

The non-linear principal component model, developed
from the normal operation data, is used to monitor the oper-
ation of the process. At each samplinginstance, thenon-linear
scores and SPE for the new observations are calculated. The
non-linear scores and SPE are monitored to detect any abnor-
malitiesin the process. When thereis no fault in the process,
the SPE is expected to be small and the scores should be
within the nominal region. A fault in the process can change
the data correlation structure or change the range of certain
process variables. This can be detected by large SPE or var-
iations in the non-linear scores.

In this study, four different fault situations are studied and
they are reactor fouling, reactiveimpurity, solvent problems,
and combined reactor fouling and reactive impurities. The
SPE plot for the four different fault situations are presented
in Fig. 6. In each of these plots, the fault occurs at the 51st
sampling time. It can be seen from Fig. 6 that the SPE from
the non-linear PCA model is very small when there is no
fault. Once a fault occurred the SPE becomes very large.
Fig. 6 indicates that, for all four fault situations, the occur-
rence of the fault can be detected by monitoring the SPE.
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Score plots have been used to distinguish different faults
[14]. The motivation behind this approach is that different
faults can result in different process measurement values
which could be projected to different areas of the score space.
In this study, it has aso been attempted to use non-linear
score plotsto localise the four different fault situations. The
score plotsare presented in Fig. 7 wherenscl, nsc2, and nsc3
represent the first three non-linear principal components. It
can be seen that the faults cannot be distinguished from the
score plots.

Different faults usually cause processvariablesto movein
different directions. The directions of the process variable
movement can be monitored by studying the projected score
movement in the score space. Here we propose using the
accumulated scoresto distinguish between different fault sit-
uations. The accumulated scores are defined as follows:

A(n) =Y (x(i) =) (8)

i=1

where x(i) isthe non-linear score for the ith observation, x
isthe mean of the nominal non-linear score, and A(n) isthe
accumulated non-linear score till time n. By definition, the
accumulated non-linear scores will remain around the origin
when thereis no fault in the process. Once afault occurs, the
accumulated non-linear scores will move away from the ori-
gin. Different faults could cause the accumulated non-linear
scores moving in different directions.

Fig. 8 shows the plot of the accumulated scores. In Fig. 8,
asl, as2, and as3 represent the accumulated first, second, and
third non-linear scores, respectively. It can be seen that the
fault situations can be clearly distinguished. The upper left
diagram shows the plot of the accumulated first and second
scores. From this diagram, it can be seen that reactor fouling
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Fig. 6. SPE plotsfor different faults.
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Fig. 8. Accumulated non-linear score plots.

is characterised by the score movement in the north-east
direction while the combined fault of reactive impurity and
reactor fouling is characterised by the score movement in the
north-west direction. Both reactive impurity and solvent
problems result in the score move in the south-west direc-
tions. However, they can be clearly differentiated between
from the lower left plot which plots the accumulations of the
second and the third non-linear scores. In this plot, reactive
impurity corresponds to the score movement in a south-west
direction whilst the solvent problem correspondsto the score
movement in anorth-west direction. Theresultsclearly indi-

cate that the accumulated scores due to different faultsmove
away from the origin along different directions.

Fig. 9 shows the accumulated non-linear score plots for
two different realisationsof reactiveimpurities. It canbeseen
that the movements of the accumulated non-linear scoresdue
to the two different realisations follow the same pattern.
Fig. 10 showsthe accumulated non-linear score plotsfor two
different realisations of reactor fouling. The movements of
accumulated non-linear scores due to the two different real-
isations are also very similar. Thus the accumulated score
plots can be used to classify different fault situations. The
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proposed non-linear statistical monitoring technique can also
be combined with other fault diagnosis techniques, such as
knowledge based approaches, to improve fault identification.

5. Conclusions
Non-linear PCA can providemoreeffectiveand robust data

compression than linear PCA for processeswith non-linearly
correlated variables. Studies have shown that fewer non-lin-

ear componentsthan linear principal componentsarerequired
to explain the same percentage of variance in a non-linear
process, hence its appeal in a performance monitoring con-
text, fewer chartsare required to be managed by the operator.
For the monitoring of processes with non-linearly correlated
variables, non-linear statistical techniques are more appro-
priate. Non-linear score plotsdo not alwaysidentify problems
inthe process. A new approach using accumul ated non-linear
scores has been shown to be a powerful approach for the
detection and identification of faults, with plots of thetrajec-
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tory of the integrated scores being associated with different
faults. Application studies demonstrate that the proposed
techniqueisvery effective.
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